1. Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20:273-297.
2. Breiman L, Friedman J, Olshen RA, Stone CJ. Classification and regression trees. Chapman and Hall/CRC; 1984
3. Breiman L. Random forests. Mach Learn 2001;45:5-32.
4. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat 2001;29:1189-1232.
5. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 1943;5:115-133.
6. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998;86:2278-2324.
7. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997;9:1735-1780.
9. Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. arXiv [Online]. 2018 [cited 2024 Feb 8]. Available from:
https://doi.org/10.48550/arXiv.1810.04805
11. van Os HJA, Ramos LA, Hilbert A, van Leeuwen M, van Walderveen MAA, Kruyt ND, et al, MR CLEAN Registry Investigators. Predicting outcome of endovascular treatment for acute ischemic stroke: potential value of machine learning algorithms. Front Neurol 2018;9:784
12. Heo J, Yoon JG, Park H, Kim YD, Nam HS, Heo JH. Machine learning-based model for prediction of outcomes in acute stroke. Stroke 2019;50:1263-1265.
14. Herzog L, Kook L, Hamann J, Globas C, Heldner MR, Seiffge D, et al. Deep learning versus neurologists: functional outcome prediction in LVO stroke patients undergoing mechanical thrombectomy. Stroke 2023;54:1761-1769.
15. Liu Y, Shah P, Yu Y, Horsey J, Ouyang J, Jiang B, et al. A clinical and imaging fused deep learning model matches expert clinician prediction of 90-day stroke outcomes. AJNR Am J Neuroradiol 2024;45:406-411.
16. Zhang H, Polson JS, Wang Z, Nael K, Rao NM, Speier WF, et al. A deep learning approach to predict recanalization first-pass effect following mechanical thrombectomy in patients with acute ischemic stroke. AJNR Am J Neuroradiol 2024;45:1044-1052.
17. Velagapudi L, Mouchtouris N, Schmidt RF, Vuong D, Khanna O, Sweid A, et al. A machine learning approach to first pass reperfusion in mechanical thrombectomy: prediction and feature analysis. J Stroke Cerebrovasc Dis 2021;30:105796
19. Colangelo G, Ribo M, Montiel E, Dominguez D, Olivé-Gadea M, Muchada M, et al. PRERISK: a personalized, artificial intelligence-based and statistically-based stroke recurrence predictor for recurrent stroke. Stroke 2024;55:1200-1209.
21. Lip GYH, Genaidy A, Tran G, Marroquin P, Estes C, Sloop S. Improving stroke risk prediction in the general population: a comparative assessment of common clinical rules, a new multimorbid index, and machine-learning-based algorithms. Thromb Haemost 2022;122:142-150.
22. Vodencarevic A, Weingärtner M, Caro JJ, Ukalovic D, Zimmermann-Rittereiser M, Schwab S, et al. Prediction of recurrent ischemic stroke using registry data and machine learning methods: the Erlangen Stroke Registry. Stroke 2022;53:2299-2306.
23. Li X, Liu H, Du X, Zhang P, Hu G, Xie G, et al. Integrated machine learning approaches for predicting ischemic stroke and thromboembolism in atrial fibrillation. AMIA Annu Symp Proc 2017;2016:799-807.
24. Han L, Askari M, Altman RB, Schmitt SK, Fan J, Bentley JP, et al. Atrial fibrillation burden signature and near-term prediction of stroke: a machine learning analysis. Circ Cardiovasc Qual Outcomes 2019;12:e005595.
26. Chao CJ, Agasthi P, Barry T, Chiang CC, Wang P, Ashraf H, et al. Using artificial intelligence in predicting ischemic stroke events after percutaneous coronary intervention. J Invasive Cardiol 2023;35:E297-E311.
28. Araki T, Jain PK, Suri HS, Londhe ND, Ikeda N, El-Baz A, et al. Stroke risk stratification and its validation using ultrasonic echolucent carotid wall plaque morphology: a machine learning paradigm. Comput Biol Med 2017;80:77-96.
34. Messica S, Presil D, Hoch Y, Lev T, Hadad A, Katz O, et al. Enhancing stroke risk and prognostic timeframe assessment with deep learning and a broad range of retinal biomarkers. Artif Intell Med 2024;154:102927
38. Delio PR, Wong ML, Tsai JP, Hinson HE, McMenamy J, Le TQ, et al. Assistance from automated ASPECTS software improves reader performance. J Stroke Cerebrovasc Dis 2021;30:105829
39. Ostmeier S, Axelrod B, Liu Y, Yu Y, Jiang B, Yuen N, et al. Random expert sampling for deep learning segmentation of acute ischemic stroke on non-contrast CT. J Neurointerv Surg 2025;17:53-60.
41. Matsoukas S, Morey J, Lock G, Chada D, Shigematsu T, Marayati NF, et al. AI software detection of large vessel occlusion stroke on CT angiography: a real-world prospective diagnostic test accuracy study. J Neurointerv Surg 2023;15:52-56.
42. Dehkharghani S, Lansberg M, Venkatsubramanian C, Cereda C, Lima F, Coelho H, et al. High-performance automated anterior circulation CT angiographic clot detection in acute stroke: a multireader comparison. Radiology 2021;298:665-670.
45. Qiu W, Kuang H, Teleg E, Ospel JM, Sohn SI, Almekhlafi M, et al. Machine learning for detecting early infarction in acute stroke with non-contrast-enhanced CT. Radiology 2020;294:638-644.
46. Nishi H, Ishii A, Tsuji H, Fuchigami T, Sasaki N, Tachibana A, et al. Automatic ischemic core estimation based on noncontrast-enhanced computed tomography. Stroke 2023;54:1815-1822.
47. Altmann S, Grauhan NF, Brockstedt L, Kondova M, Schmidtmann I, Paul R, et al. Ultrafast brain MRI with deep learning reconstruction for suspected acute ischemic stroke. Radiology 2024;310:e231938.
53. Rabinstein AA, Yost MD, Faust L, Kashou AH, Latif OS, Graff-Radford J, et al. Artificial intelligence-enabled ECG to identify silent atrial fibrillation in embolic stroke of unknown source. J Stroke Cerebrovasc Dis 2021;30:105998
55. Heo J, Lee H, Seog Y, Kim S, Baek JH, Park H, et al. Cancer prediction with machine learning of thrombi from thrombectomy in stroke: multicenter development and validation. Stroke 2023;54:2105-2113.
58. Lee CC, Su SY, Sung SF. Machine learning-based survival analysis approaches for predicting the risk of pneumonia post-stroke discharge. Int J Med Inform 2024;186:105422
59. Lu X, Chen Y, Zhang G, Zeng X, Lai L, Qu C. Application of interpretable machine learning algorithms to predict acute kidney injury in patients with cerebral infarction in ICU. J Stroke Cerebrovasc Dis 2024;33:107729
60. Heo J, Yoo J, Lee H, Lee IH, Kim JS, Park E, et al. Prediction of hidden coronary artery disease using machine learning in patients with acute ischemic stroke. Neurology 2022;99:e55-e65.
62. Lim DZ, Yeo M, Dahan A, Tahayori B, Kok HK, Abbasi-Rad M, et al. Development of a machine learning-based real-time location system to streamline acute endovascular intervention in acute stroke: a proof-of-concept study. J Neurointerv Surg 2022;14:799-803.