1. Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol 2011;10:626-636.
3. UCAS Japan Investigators. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med 2012;366:2474-2482.
9. Din M, Agarwal S, Grzeda M, Wood DA, Modat M, Booth TC. Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis. J Neurointerv Surg 2023;15:262-271.
14. Ueda D, Yamamoto A, Nishimori M, Shimono T, Doishita S, Shimazaki A, et al. Deep learning for MR angiography: automated detection of cerebral aneurysms. Radiology 2019;290:187-194.
23. Yang J, Xie M, Hu C, Alwalid O, Xu Y, Liu J, et al. Deep learning for detecting cerebral aneurysms with CT angiography. Radiology 2021;298:155-163.
25. Wei X, Jiang J, Cao W, Yu H, Deng H, Chen J, et al. Artificial intelligence assistance improves the accuracy and efficiency of intracranial aneurysm detection with CT angiography. Eur J Radiol 2022;149:110169
26. Lehnen NC, Haase R, Schmeel FC, Vatter H, Dorn F, Radbruch A, et al. Automated detection of cerebral aneurysms on TOF-MRA using a deep learning approach: an external validation study. AJNR Am J Neuroradiol 2022;43:1700-1705.
28. Heit JJ, Honce JM, Yedavalli VS, Baccin CE, Tatit RT, Copeland K, et al. RAPID Aneurysm: artificial intelligence for unruptured cerebral aneurysm detection on CT angiography. J Stroke Cerebrovasc Dis 2022;31:106690
32. Claux F, Baudouin M, Bogey C, Rouchaud A. Dense, deep learning-based intracranial aneurysm detection on TOF MRI using two-stage regularized U-Net. J Neuroradiol 2023;50:9-15.
34. Wang J, Sun J, Xu J, Lu S, Wang H, Huang C, et al. Detection of intracranial aneurysms using multiphase CT angiography with a deep learning model. Acad Radiol 2023;30:2477-2486.
36. Colasurdo M, Shalev D, Robledo A, Vasandani V, Luna ZA, Rao AS, et al. Validation of an automated machine learning algorithm for the detection and analysis of cerebral aneurysms. J Neurosurg 2023;139:1002-1009.
37. Hu B, Shi Z, Lu L, Miao Z, Wang H, Zhou Z, et al, China Aneurysm AI Project Group. A deep-learning model for intracranial aneurysm detection on CT angiography images in China: a stepwise, multicentre, early-stage clinical validation study. Lancet Digit Health 2024;6:e261-e271.
39. Bizjak Ž, Choi JH, Park W, Pernuš F, Špiclin Ž. Deep geometric learning for intracranial aneurysm detection: towards expert rater performance. J Neurointerv Surg 2024;16:1157-1162.
40. Li Y, Zhang H, Sun Y, Fan Q, Wang L, Ji C, et al. Deep learning-based platform performs high detection sensitivity of intracranial aneurysms in 3D brain TOF-MRA: an external clinical validation study. Int J Med Inform 2024;188:105487
41. You W, Feng J, Lu J, Chen T, Liu X, Wu Z, et al. Diagnosis of intracranial aneurysms by computed tomography angiography using deep learning-based detection and segmentation. J Neurointerv Surg 2024;17:e132-e138.
42. Wei J, Song X, Wei X, Yang Z, Dai L, Wang M, et al. Knowledge-augmented deep learning for segmenting and detecting cerebral aneurysms with CT angiography: a multicenter study. Radiology 2024;312:e233197.
43. De Toledo OF, Gutierrez-Aguirre SF, Lara-Velazquez M, Qureshi AI, Camp W, Erazu F, et al. Use of artificial intelligence software to detect intracranial aneurysms: a comprehensive stroke center experience. World Neurosurg 2024;188:e59-e63.
44. Goertz L, Jünger ST, Reinecke D, von Spreckelsen N, Shahzad R, Thiele F, et al. Deep learning-assistance significantly increases the detection sensitivity of neurosurgery residents for intracranial aneurysms in subarachnoid hemorrhage. J Clin Neurosci 2025;132:110971
45. Zhuo L, Zhang Y, Song Z, Mo Z, Xing L, Zhu F, et al. Enhancing radiologists’ performance in detecting cerebral aneurysms using a deep learning model: a multicenter study. Acad Radiol 2025;32:1611-1620.
50. Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800-809.
51. Park SH, Han K, Jang HY, Park JE, Lee JG, Kim DW, et al. Methods for clinical evaluation of artificial intelligence algorithms for medical diagnosis. Radiology 2023;306:20-31.
53. Begoli E, Bhattacharya T, Kusnezov D. The need for uncertainty quantification in machine-assisted medical decision making. Nat Mach Intell 2019;1:20-23.
55. Tejani AS, Klontzas ME, Gatti AA, Mongan JT, Moy L, Park SH, et al, CLAIM 2024 Update Panel. Checklist for Artificial Intelligence in Medical Imaging (CLAIM): 2024 Update. Radiol Artif Intell 2024;6:e240300.
59. Liu X, Glocker B, McCradden MM, Ghassemi M, Denniston AK, Oakden-Rayner L. The medical algorithmic audit. Lancet Digit Health 2022;4:e384-e397.